Set up an integral for finding the Laplace transform of f(t)=t−6. F(s)=L{f(t)}=∫BA e^(-s*t)(t-6)dt equation editorEquation Editor help (formulas) where A= 0 equation editorEquation Editor and B= INF equation editorEquation Editor . Find the antiderivative (with constant term 0) corresponding to the previous part. equation editorEquation Editor Evaluate appropriate limits to compute the Laplace transform of f(t): F(s)=L{f(t)}= equation editorEquation Editor Where does the Laplace transform you found exist? In other words, what is the domain of F(s)? equation editorEquation Editor help (inequalities)

Respuesta :

Answer:

See below

Step-by-step explanation:

By definition the Laplace transform of f(t) = t-6 is

[tex] \bf F(s)=L[f(t)](s)=\int_{0}^{\infty}e^{-st}(t-6)dt[/tex]

To find an anti-derivative, let's consider the indefinite integral  

[tex] \bf \int e^{-st}(t-6)dt[/tex]

and use integration by parts.

If we set

[tex] \bf u=(t-6)\\dv=e^{-st}dt[/tex]

then

[tex] \bf du=dt\\v=\int e^{-st}dt=\frac{e^{-st}}{-s}[/tex]

hence

[tex] \bf \int e^{-st}(t-6)dt=uv-\int vdu=(t-6)\frac{e^{-st}}{-s}-\int \frac{e^{-st}}{-s}dt=\\=(t-6)\frac{e^{-st}}{-s}+\frac{1}{s}\int e^{-st}dt=(t-6)\frac{e^{-st}}{-s}+\frac{1}{s}\frac{e^{-st}}{(-s)}=\\=(t-6)\frac{e^{-st}}{-s}-\frac{e^{-st}}{s^2}=\frac{e^{-st}}{s}(6-t-\frac{1}{s})[/tex]

To find the Laplace transform we evaluate the improper integral as

[tex] \bf \lim_{n \rightarrow \infty}\int_{0}^{n}e^{-st}(t-6)dt=\lim_{n \rightarrow \infty}\left[\frac{e^{-st}}{s}(6-t-\frac{1}{s}) \right]_0^{n}=\\=\lim_{n \rightarrow \infty}\left[\frac{e^{-sn}}{s}(6-n-\frac{1}{s}) -\frac{1}{s}(6-\frac{1}{s})\right][/tex]

But

[tex] \bf \lim_{n \rightarrow \infty}\left[\frac{e^{-sn}}{s}(6-n-\frac{1}{s})\right]=0\;(s>0)[/tex]

and does not exist for s<0.

So, the Laplace transform only exists for s>0 and equals

[tex] \bf \boxed{F(s)=-\frac{1}{s}(6-\frac{1}{s})=6(\frac{1}{s^2}-\frac{1}{s})}[/tex] for s>0