The owner of a landscaping company is developing a proposal to maintain the grounds of a building. It is estimated that 75 gardening hours and 25 foreman hours will be required. The total budget for these hours is $1600. The hourly wage for a foreman is 30%, more than a gardener plus an additional $1.65 per hour. Which of the following systems of equations can be used to determine the hourly wages of a gardener, g, and a foreman, f, so the total wages are $1600?A. 25g+75f=1600 f=1.3g+1.65B. 25f+75g=1600
f=1.3g+1.65
C.25g+75f=1600
g=1.3f+1.65
D. 25f+75g=1600
g=1.3f+1.65

Respuesta :

Answer:

B

Step-by-step explanation:

Given:

The estimated gardening hours = 75 hours

The estimated foreman hours = 25 hours

The hourly wages of a gardener = g

The hourly wages of a foreman = f

If the hourly wage for a foreman is 30%, more than a gardener plus an additional $1.65 per hour, then,

               f = ([tex]\frac{30}{100}[/tex] of g + g) + 1.65

               f = ([tex]\frac{30}{100}[/tex] x g + g) + 1.65

               f = 0.3g + g + 1.65

               f = 1.3g + 1.65                                                                     (1)

The total wages for the gardeners = The estimated gardening hours x The hourly wages of a gardener

               The total wages for the gardeners = 75 x g

                                                       = 75g

The total wages for the foreman = The estimated foreman hours x The hourly wages of a foreman

                The total wages for the foreman = 25 x f

                                                      = 25f  

The total wages for the foreman + The total wages for the gardeners = The total budgets for the project for the estimated hours

                                                 25f + 75g = 1600                               (2)

Therefore the answer is option B. 25f + 75g = 1600   f = 1.3g + 1.65