Consider the following distribution of objects: a 4.00-kg object with its center of gravity at (0, 0) m, a 3.20-kg object at (0, 6.00) m, and a 1.40-kg object at (4.00, 0) m. Where should a fourth object of mass 6.00 kg be placed so that the center of gravity of the four-object arrangement will be at (0, 0)?

Respuesta :

Explanation:

It is given that,

Mass, [tex]m_1=4\ kg[/tex]

Center of gravity, [tex](x_1,y_1)=(0,0)[/tex]

Mass, [tex]m_2=3.2\ kg[/tex]

Center of gravity, [tex](x_2,y_2)=(0,6)[/tex]

Mass, [tex]m_3=1.4\ kg[/tex]

Center of gravity, [tex](x_3,y_3)=(4,0)[/tex]

Let the 6 kg object of mass is placed at point (x,y). The center of gravity is calculated as :

[tex]0=\dfrac{m_1x_1+m_2x_2+m_3x_3+m_4x_4}{m_1+m_2+m_3+m_4}[/tex]

[tex]0=\dfrac{4\times 0+3.2\times 0+1.4\times 4+6\times x}{4+3.2+1.4+6}[/tex]

x = -0.933 meters

For finding y,

[tex]0=\dfrac{m_1y_1+m_2y_2+m_3y_3+m_4y_4}{m_1+m_2+m_3+m_4}[/tex]

[tex]0=\dfrac{4\times 0+3.2\times 6+1.4\times 0+6\times y}{4+3.2+1.4+6}[/tex]

y = -3.2 meters

So, the center of gravity of the four-object arrangement will be at (-0.933,-3.2). Hence, this is the required solution.