Respuesta :
Answer:
[tex]Xs=30cm[/tex] and [tex]As=900 cm^{2}[/tex]
Step-by-step explanation:
At=As+Ar; A=b.h and [tex]At=4500 cm^{2}[/tex], then: At=(x+120)x so
(x+120)x=4500, [tex]x^{2} +120x-4500=0[/tex] Applying cuadratic equation formula:[tex]\frac{120+-\sqrt{120^{2} -4.1.-4500} }{2} =-\frac{120+-\sqrt{14400+18000} }{2}= x1=30 and x2=-150, finally Xs=30cm, and As=900cm^{2}[/tex]

Answer:
30cm
Step-by-step explanation:
Let the dimensions of the square is x cm.
The plank of area 4500 cm² was broken into two pieces, one of which is a square and the other a rectangle.
Length of the broken off rectangle = 120 cm
Width of the broken off rectangle = x cm
Length of plank = (120+x) cm
Width of plank = x cm
Area of a rectangle is
[tex]Area=lenght\times width[/tex]
Area of plank is
[tex]Area=(x+120)\times x[/tex]
[tex]Area=x^2+120x[/tex]
The area of a rectangular plank is 4500 cm².
[tex]x^2+120x=4500[/tex]
[tex]x^2+120x-4500=0[/tex]
Splitting the middle term we get
[tex]x^2+150x-30x-4500=0[/tex]
[tex]x(x+150)-30(x+150)=0[/tex]
[tex](x+150)(x-30)=0[/tex]
Using zero product property we get
[tex](x+150)=0\Rightarrow x=-150[/tex]
[tex](x-30)=0\Rightarrow x=30[/tex]
x can not be a negative number because it is the side length of square. So, x=30.
Therefore, the side length of the square is 30cm.
