Answer:
Part a)
[tex]v_{cm} = 1 m/s[/tex]
Part b)
[tex]h = 1.02 m[/tex]
Part c)
[tex]v_1 = 3 m/s[/tex]
[tex]v_2 = 2 m/s[/tex]
Explanation:
Part a)
When block reached to maximum height then block and ramp will move together.
so here we will have
[tex]v_{cm} = \frac{mv}{M + m}[/tex]
[tex]v_{cm} = \frac{5(5)}{5 + 20}[/tex]
[tex]v_{cm} = 1 m/s[/tex]
Part b)
Now we can use energy conservation to find the height
[tex]\frac{1}{2}mv^2 = \frac{1}{2}(M + m)v_{cm}^2 + mgh[/tex]
[tex]\frac{1}{2}(5)(5^2) = \frac{1}{2}(20 + 5)1^2 + 5(9.81)h[/tex]
[tex]h = 1.02 m[/tex]
Part c)
When block and ramp separate finally then we have
[tex]mv = -mv_1 + Mv_2[/tex]
[tex]5\times 5 = -5 v_1 + 20 v_2[/tex]
[tex]4v_2 - v_1 = 5[/tex]
also by energy equation
[tex]\frac{1]{2}(5)(5^2) = \frac{1}{2}(5)v_1^2 + \frac{1}{2}(20)v_2^2[/tex]
[tex]25 = v_1^2 + 4 v_2^2[/tex]
by solving above equations we have
[tex]v_1 = 3 m/s[/tex]
[tex]v_2 = 2 m/s[/tex]