Respuesta :
Answer:
[tex]M_{m}=2.31x10^{25} kg[/tex]
Explanation:
The distance is the same in the experiment and using the differents times can find the velocities so
[tex]v_{1}=\frac{x}{t_{1}}=\frac{4m}{0.0645s}[/tex]
[tex]v_{1}=62.01\frac{m}{s}[/tex]
[tex]v_{2}=\frac{x}{t_{2}}=\frac{4m}{0.0320s}[/tex]
[tex]v_{1}=125\frac{m}{s}[/tex]
Now the experiment can use the equations of tension in simple pendulum
[tex]v=\sqrt{\frac{T*L}{m} }[/tex]
[tex]T=\frac{v^2*m}{L}[/tex]
[tex]T_{1}=\frac{v_{1}^2*0.0280kg}{4m}[/tex]
[tex]T_{1}=\frac{62.01^2*0.0280kg}{4m}[/tex]
[tex]T_{1}=26.91N[/tex]
[tex]T_{2}=\frac{v_{2}^2*0.0280kg}{4m}[/tex]
[tex]T_{12}=\frac{125^2*0.0280kg}{4m}[/tex]
[tex]T_{2}=109.375 N[/tex]
Now to determinate the mass using the formula of force of gravity
[tex]F_{g}=\frac{G*M_{m}}{r^2}[/tex]
[tex]G=6.67x10^{-11} \frac{N*M^2}{kg^2}[/tex]
Solve to Mm
[tex]M_{m}=\frac{F_{g}*r^2}{G}[/tex]
[tex]M_{m}=\frac{\frac{T_{1}}{T_{2}}*(7.50x10^7m)^2}{6.67x10^{-11}\frac{N*m^2}{kg^2} }[/tex]
[tex]M_{m}=\frac{0.273N*5.625x10^15m^2}{6.67x10^{-11}\frac{N*m^2}{kg^2}}[/tex]
[tex]M_{m}=2.31x10^{25} kg[/tex]