Respuesta :
Answer:
P(x>92) = 0.4431
Step-by-step explanation:
Let X be a random variable which is a measure of the time to get returns.
Mean (u) = 90 mins
Standard deviation(α) = 14 mins
Number (n) = 100
For normal distribution
Z = (X - u) / α
For Pr(x = 92)
(92 - 90) / 14
= 2/14
= 0.143
From the normal distribution table 0.143 = 0.0569
Φ(α) = 0.0569
Recall that if Z positive,
Pr(x>a) = 0.5 -Φ(α)
Therefore;
Pr(x>92) = 0.5 - 0.0569
= 0.4431
Answer: 0.0764
Step-by-step explanation:
Given : Population mean : [tex]\mu= 90\text{ minutes}[/tex]
Standard deviation : [tex]\sigma = 14\text{ minutes}[/tex]
Let [tex]\overline{x}[/tex] be the mean time for the sample of 100 returns for this year.
Now , the probability that the mean time for the sample of 100 returns for this year is greater than 92 is given by :-
[tex]P(\overline{x}>92)= P(\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}>\dfrac{92-90}{\dfrac{14}{\sqrt{100}}})\\\\=P(z>1.43)\ \ \ [\because\ z=\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\= 1-P(z\leq1.43)\ \ \ [\because\ P(Z>z)=1-P(Z\leq z)][/tex]
[tex]=1-0.9236=0.0764[/tex]
Hence, the required probability is 0.0764.