Answer:
[tex]t = 0.93 s[/tex]
Part b)
[tex]d = 3.98 m[/tex]
Part c)
[tex]v_x = 4.28 m/s[/tex]
[tex]v_y = -11.49 m/s[/tex]
Explanation:
The two components of the velocity of the ball is given as
[tex]v_x = 4.9 cos29[/tex]
[tex]v_x = 4.28 m/s[/tex]
[tex]v_y = 4.9 sin29[/tex]
[tex]v_y = 2.37 m/s[/tex]
Part a)
now we know that the displacement in y direction is given as
[tex]\Delta y = 6.4 m[/tex]
so we have
[tex]\Delta y = v_y t + \frac{1}{2}gt^2[/tex]
[tex]6.4 = 2.37 t + 4.9 t^2[/tex]
[tex]t = 0.93 s[/tex]
Part b)
Distance of the ball in x direction of the motion is given as
[tex]d = v_x t[/tex]
[tex]d = 4.28 \times 0.93[/tex]
[tex]d = 3.98 m[/tex]
Part c)
In x direction the velocity will remain the same always
[tex]v_x = 4.28 m/s[/tex]
while in Y direction we can use kinematics
[tex]v_y = v_{oy} + at[/tex]
[tex]v_y = -2.37 - 9.81(0.93)[/tex]
[tex]v_y = -11.49 m/s[/tex]