Answer: Yes , there is evidence that the average EER is different from 9.0
Step-by-step explanation:
[tex]\\[/tex]Summing up the samples given , we have 331.6
[tex]\\[/tex]Therefore , sample mean = 331.6/36
[tex]\\[/tex]≈9.2
[tex]\\[/tex]The standard deviation is ≈ 0.38
[tex]\\[/tex]Since n > 30 , then we use Z- statistics
[tex]\\[/tex]Let [tex]H_{0}[/tex] : Average EER = 9
[tex]\\[/tex] [tex]H_{1}[/tex] : Average ≠ 9
[tex]\\[/tex]using the z - formula
[tex]\\[/tex]z = [tex]\frac{x - u}{s/\sqrt{n} }[/tex]
[tex]\\[/tex]= [tex]\frac{9.2-9}{0.38/\sqrt{36} }[/tex]
[tex]\\[/tex]= 3. 15
[tex]\\[/tex]Checking the z- value at 0.05 , we have 1.64
[tex]\\[/tex]Conclusion: since the z- calculate value is greater than the z-tab , then we reject the null hypothesis and conclude that there the average EER is different from 9