You must design a closed rectangular box of width w, length l and height h, whose volume is 504 cm3. The sides of the box cost 3 cents/cm2 and the top and bottom cost 4 cents/cm2. Find the dimensions of the box that minimize the total cost of the materials used.

Respuesta :

Answer:

Dimensions will be

Length = 7.23 cm

Width = 7.23 cm

Height = 9.64 cm

Step-by-step explanation:

A closed box has length = l cm

width of the box = w cm

height of the box = h cm

Volume of the rectangular box = lwh

504 = lwh

[tex]h=\frac{504}{lw}[/tex]

Sides which involve length and width and height, cost = 3 cents per cm²

Top and bottom of the box costs = 4 cents per cm²

Cost of the sides [tex]C_{s}[/tex]= 3[2(l + w)h] = 6(l + w)h

[tex]C_{s}[/tex]= 3[2(l + w)h]

[tex]C_{s}=6(l+w)(\frac{504}{lw} )[/tex]

Cost of the top and the bottom [tex]C_{(t,p)}[/tex]= 4(2lw) = 8lw

Total cost of the box C = [tex]3024\frac{(l+w)}{lw}[/tex] + 8lw

                                      = [tex]3024[\frac{1}{l}+\frac{1}{w}][/tex] + 8lw

To minimize the cost of the sides

[tex]\frac{dC}{dl}=3024(-l^{-2}+0)+8w=0[/tex]

[tex]\frac{3024}{l^{2}}=8w[/tex]

[tex]\frac{378}{l^{2}}=w[/tex] ---------(1)

[tex]\frac{dC}{dw}=3024(-w^{-2})+8l=0[/tex]

[tex]\frac{3024}{w^{2}}=8l[/tex]

[tex]\frac{378}{w^{2}}=l[/tex]

[tex]w^{2}=\frac{378}{l}[/tex]-------(2)

Now place the value of w from equation (1) to equation (2)

[tex](\frac{378}{l^{2}})^{2}=\frac{378}{l}[/tex]

[tex]\frac{(378)^{2} }{l^{4}}=\frac{378}{l}[/tex]

l³ = 378

l = ∛378 = 7.23 cm

From equation (2)

[tex]w^{2}=\frac{378}{7.23}[/tex]

[tex]w^{2}=52.28[/tex]

w = 7.23 cm

As lwh = 504 cm³

(7.23)²h = 504

[tex]h=\frac{504}{(7.23)^{2}}[/tex]

h = 9.64 cm