Answer:
[tex]m\angle CDB=90[/tex]°
[tex]m\angle CBD=90- \alpha[/tex]°
[tex]m\angle BCD=\alpha[/tex]°
[tex]m\angle CDA=90[/tex]°
[tex]m\angle CAD=\alpha[/tex]°
[tex]m\angle ACD=90- \alpha[/tex]°
Step-by-step explanation:
The triangles are drawn below.
Since, CD is the height to AB, therefore, CD is perpendicular to AB.
Therefore, angles [tex]m\angle CDA=m\angle CDB=90[/tex]°
Also, [tex]m\angle CAD[/tex] is same as [tex]m\angle A[/tex].
Therefore, [tex]m\angle CAD=\alpha[/tex]°
Now, triangles ΔCBD and ΔCAD are right angled triangles.
So, for the right angled triangle ΔCAD,
[tex]m\angle CAD+m\angle ACD=90\\\alpha + m\angle ACD=90\\m\angle ACD=90- \alpha[/tex]
Now, from the figure,
[tex]m\angle C=m\angle ACD+m\angle BCD\\90=90- \alpha + m\angle BCD\\\therefore m\angle BCD=\alpha[/tex]
From [tex]\DeltaCBD[/tex],
[tex]m\angle BCD+m\angle CBD=90\\\alpha + m\angle CBD=90\\m\angle CBD=90- \alpha[/tex]
Hence, all the angles of the triangles ΔCBD and ΔCAD are:
[tex]m\angle CDB=90[/tex]°
[tex]m\angle CBD=90- \alpha[/tex]°
[tex]m\angle BCD=\alpha[/tex]°
[tex]m\angle CDA=90[/tex]°
[tex]m\angle CAD=\alpha[/tex]°
[tex]m\angle ACD=90- \alpha[/tex]°