Answer:
[tex]z=3[/tex]
Step-by-step explanation:
Given:
Test score of the sample, [tex]x=336[/tex]
Mean of the normally distributed sample, [tex]\mu=240[/tex]
Standard deviation of the sample, [tex]\sigma=32[/tex]
Therefore, the [tex]z[/tex]-score for a normally distributed sample is given as:
[tex]z=\frac{x-\mu}{\sigma}\\\\z=\frac{336-240}{32}\\\\z=\frac{96}{32}=3[/tex]
So, the z-score of the given set of data is 3.