Answer:
The value of c' is 24
Step-by-step explanation:
Given as for circle :
C = 6 And [tex]\frac{d}{d'}[/tex] = .25
For circle first
The Circumference of circle = C
Diameter of circle = d
Radius of circle = r
So , circumference of circle = 2 [tex]\pi[/tex] r
For circle second
The Circumference of circle = C'
Diameter of circle = d'
Radius of circle = r'
So , circumference of circle = 2 [tex]\pi[/tex] r'
Now, [tex]\frac{c}{c'}[/tex] = [tex]\frac{2 \pi r}{2 \pi r'}[/tex]
Or, ∵ Diameter = 2 × Radius
So, [tex]\frac{c}{c'}[/tex] = [tex]\frac{2 \pi d}{2 \pi d'}[/tex]
Or, [tex]\frac{6}{c'}[/tex] = [tex]\frac{2 \pi d}{2 \pi d'}[/tex]
So, [tex]\frac{6}{c'}[/tex] = [tex]\frac{25}{100}[/tex]
∴ c' = [tex]\frac{6\times 100}{25}[/tex] = 24
Hence The value of c' is 24 Answer