contestada


Given a circle with measures of (C, d, and r) and a circle with measures of (C' ,d' , and r'). what is C' if d/d'=.25 and C=6?​

Respuesta :

Answer:

The value of c' is 24

Step-by-step explanation:

Given as for circle :

C =  6  And   [tex]\frac{d}{d'}[/tex] = .25

For circle first

The Circumference of circle = C

Diameter   of circle = d

Radius of circle  = r

So , circumference of circle = 2 [tex]\pi[/tex] r

For circle second  

The Circumference of circle = C'

Diameter   of circle = d'

Radius of circle  = r'

So , circumference of circle = 2 [tex]\pi[/tex] r'

Now, [tex]\frac{c}{c'}[/tex] = [tex]\frac{2 \pi  r}{2 \pi  r'}[/tex]

Or,   ∵  Diameter = 2 × Radius

So, [tex]\frac{c}{c'}[/tex] = [tex]\frac{2 \pi  d}{2 \pi  d'}[/tex]

Or, [tex]\frac{6}{c'}[/tex] = [tex]\frac{2 \pi  d}{2 \pi  d'}[/tex]

So,   [tex]\frac{6}{c'}[/tex] =  [tex]\frac{25}{100}[/tex]

∴   c' = [tex]\frac{6\times 100}{25}[/tex] = 24

Hence  The value of c' is 24     Answer