Answer:
The value of [tex]sin^{2}x + sin^{4}x[/tex] is 1
Step-by-step explanation:
Given as :
cos x + cos² x = 1
So, [tex]sin^{2}x + sin^{4}x[/tex] = sin²x + (sin²x)²
Or, [tex]sin^{2}x + sin^{4}x[/tex] = sin²x + (1 - cos²x)²
AS given in question that cos x + cos² x = 1
I.e cox = 1 - cos²x
So, [tex]sin^{2}x + sin^{4}x[/tex] = sin²x + cos²x
∵ Note: sin²x + cos²x = 1
∴ [tex]sin^{2}x + sin^{4}x[/tex] = 1
Hence the value of [tex]sin^{2}x + sin^{4}x[/tex] is 1 Answer