Respuesta :

Answer:

The value of  [tex]sin^{2}x + sin^{4}x[/tex] is  1  

Step-by-step explanation:

Given as :

cos x + cos² x = 1

So, [tex]sin^{2}x + sin^{4}x[/tex] = sin²x + (sin²x)²

Or, [tex]sin^{2}x + sin^{4}x[/tex] = sin²x + (1 - cos²x)²    

AS given in question that  cos x + cos² x = 1

I.e cox = 1 - cos²x

So, [tex]sin^{2}x + sin^{4}x[/tex] = sin²x + cos²x  

Note:  sin²x + cos²x = 1

[tex]sin^{2}x + sin^{4}x[/tex] = 1

Hence the value of  [tex]sin^{2}x + sin^{4}x[/tex] is  1  Answer