Answer:
18x² - 6x
Step-by-step explanation:
Differentiate using the product rule, that is
y = f(x)g(x), then
[tex]\frac{dy}{dx}[/tex] = f(x)g'(x) + g(x)f'(x)
here
f(x) = 3x² ⇒ f'(x) = 6x
g(x) = 2x - 1 ⇒ g'(x) = 2, thus
[tex]\frac{d}{dx}[/tex](3x²(2x - 1)
= 3x² × 2 + 6x(2x - 1)
= 6x² + 12x² - 6x
= 18x² - 6x