Respuesta :
Answer:
Horizontal Compression, Right 1, Down 3.
Step-by-step explanation:
Given:
The transformed function is, [tex]f(x)=\sqrt{3x-3}-3[/tex]
Let the parent function be [tex]g(x) =\sqrt{x}[/tex]
Now, in order to transform [tex]g(x)[/tex] to [tex]f(x)[/tex], we need to perform the following transformations:
1. [tex]g(x)\rightarrow g(3x)=\sqrt{3x}[/tex].
Multiplying a positive number to the [tex]x[/tex] value of the function leads in horizontal compression.
2. [tex]g(3x)\rightarrow g(3(x-1))=\sqrt{3(x-1)}=\sqrt{3x-3}[/tex]
Adding a negative number to [tex]x[/tex] leads to a right shift of the function.
Here, the graph shifts right by 1 unit.
3. [tex]g(3(x-1))\rightarrow g(3(x-1)-3)=\sqrt{3x-3}-3[/tex]
Adding a negative number to the function results in downward movement of the graph. Here, the graph moves down by 3 units.
Therefore, the order of correct transformations are:
Horizontal compression, Right shift by 1 units and then Down shift by 3 units.
Answer:
Horizontal Compression, Right 1, Down 3.
Step-by-step explanation:
|a| > 1 compression
horizontal bc inside square root