Given the function, f(x)=sqrt 3x-3-3 , choose the correct transformation(s). Horizontal Compression, Right 1, Down 3 Horizontal Stretch, Right 3, Down 3 Vertical Compression, Right 1, Down 3 Vertical Stretch, Right 3, Down 3

Respuesta :

Answer:

Horizontal Compression, Right 1, Down 3.

Step-by-step explanation:

Given:

The transformed function is, [tex]f(x)=\sqrt{3x-3}-3[/tex]

Let the parent function be [tex]g(x) =\sqrt{x}[/tex]

Now, in order to transform [tex]g(x)[/tex] to [tex]f(x)[/tex], we need to perform the following transformations:

1. [tex]g(x)\rightarrow g(3x)=\sqrt{3x}[/tex].

Multiplying a positive number to the [tex]x[/tex] value of the function leads in horizontal compression.

2. [tex]g(3x)\rightarrow g(3(x-1))=\sqrt{3(x-1)}=\sqrt{3x-3}[/tex]

Adding a negative number to [tex]x[/tex] leads to a right shift of the function.

Here, the graph shifts right by 1 unit.

3. [tex]g(3(x-1))\rightarrow g(3(x-1)-3)=\sqrt{3x-3}-3[/tex]

Adding a negative number to the function results in downward movement of the graph. Here, the graph moves down by 3 units.

Therefore, the order of correct transformations are:

Horizontal compression, Right shift by 1 units and then Down shift by 3 units.

Answer:

Horizontal Compression, Right 1, Down 3.

Step-by-step explanation:

|a| > 1 compression

horizontal bc inside square root