contestada

how much work is done to increase a 20-kg scooter's speed from 10 m/s to 20 m/s
a. 1000j
b. 3000j
c. 4000j
d. 100j

Respuesta :

Answer:

3000 Joule of work is to be done.

Option: b

Explanation:

Given, mass of scooter = 20 Kg

Initial speed = 10 m/s,  Final speed = 20 m/s, Work done = ΔE

Where, ΔE= change in kinetic energy  

Solution:

[tex]\text { Kinetic Energy (initial) }=\frac{1}{2} \times \mathrm{mv}^{2}[/tex]

[tex]\text { Kinetic Energy (initial) }=\frac{1}{2} \times 20 \mathrm{Kg} \times(10 \mathrm{m} / \mathrm{s})^{2}[/tex]

[tex]\frac{1}{2} \times 200 \mathrm{Kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}[/tex] = [tex]1000 \mathrm{Kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}[/tex]

[tex]\text { Kinetic Energy (final) }=\frac{1}{2} \times m v^{2}[/tex]

[tex]\frac{1}{2} \times 20 \mathrm{Kg} \times(20 \mathrm{m} / \mathrm{s})^{2}[/tex]

[tex]\frac{1}{2} \times 20 \mathrm{Kg} \times 400 \mathrm{m}^{2} / \mathrm{s}^{2}[/tex]

[tex]\frac{1}{2} \times 8000 \mathrm{Kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}[/tex]

[tex]4000 \mathrm{Kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}[/tex]

Work done = ΔE = Kinetic Energy (final) - Kinetic Energy (initial)  

Work done = ΔE = 4000 J - 1000 J work done = ΔE = 3000J

Answer:

3,000 J

Explanation:

A P E X