Answer:
[tex]m\angle CDB=90\\m\angle CBD=90-\alpha\\m\angle BCD=\alpha\\\\m\angle CDA=90\\m\angle CAD=\alpha\\m\angle ACD=90-\alpha[/tex]
Step-by-step explanation:
The triangles are drawn below.
CD is perpendicular to AB as CD is height to AB.
Therefore, angles [tex]m\angle CDB=m\angle CDA=90[/tex]°
So, triangles ΔCBD and ΔCAD are right angled triangles.
Now, from the right angled triangle ΔABC,
[tex]m\angle A+m\angle B =90\\\alpha+m\angle B=90\\m\angle B=90-\alpha[/tex]
From ΔCBD,
[tex]m\angle CBD[/tex] is same as [tex]m\angle B[/tex].
So, [tex]m\angle CBD=90-\alpha[/tex]
[tex]m\angle BCD+m\angle BDC =90\\m\angle BCD+90-\alpha=90\\m\angle BCD=\alpha[/tex]
Now, from ΔCAD,
[tex]m\angle CAD[/tex] is same as [tex]m\angle A[/tex]
So, [tex]m\angle CAD=\alpha[/tex]
[tex]m\angle CAD+m\angle ACD =90\\\alpha+m\angle ACD=90\\m\angle ACD=90-\alpha[/tex]
Hence, the unknown angles of both the triangles are:
[tex]m\angle CDB=90\\m\angle CBD=90-\alpha\\m\angle BCD=\alpha\\\\m\angle CDA=90\\m\angle CAD=\alpha\\m\angle ACD=90-\alpha[/tex]