Answer:
Part a)
[tex]v = 636 m/s[/tex]
Part b)
[tex]\Delta E = 1898 J[/tex]
Explanation:
Part a)
Let the bullet is moving initially with speed v
so by momentum conservation we will have
[tex]mv = (M + m) v_f[/tex]
[tex]v_f = \frac{0.0094 v}{0.0094 + 5.5}[/tex]
[tex]v_f = 1.706 \times 10^{-3} v[/tex]
now by energy conservation we know that
[tex]\frac{1}{2}(M + m)(v_f^2) = (M + m)gH[/tex]
[tex]H = \frac{v_f^2}{2g}[/tex]
[tex]0.06 = \frac{(1.706\times 10^{-3}v)^2}{2(9.81)}[/tex]
[tex]0.06 = 1.48 \times 10^{-7} v^2[/tex]
[tex]v = 636 m/s[/tex]
Part b)
Energy loss of the system is given as
[tex]\Delta E = \frac{1}{2}mv_i^2 - \frac{1}{2}(M + m)v_f^2[/tex]
[tex]\Delta E = \frac{1}{2}(9.4 \times 10^{-3})(636^2) - \frac{1}{2}(0.0094 + 5.5)(1.08^2)[/tex]
[tex]\Delta E = 1901.13 - 3.21[/tex]
[tex]\Delta E = 1898 J[/tex]