Respuesta :
Answer:0.0668
Step-by-step explanation:
Given
mean of sample [tex]\mu =40 [/tex]
Standard deviation [tex]\sigma =2[/tex]
For [tex]n=36[/tex] sample
Random variable [tex]Z=\frac{X-\mu }{\frac{\sigma }{\sqrt{n}}}[/tex]
For combined resistance of 1458 ohm mean resistance of [tex]\mu =\frac{1458}{36}=40.5[/tex]
[tex]P(40.5<X)=P(\frac{40.5-\mu }{\frac{2}{\sqrt{36}}}<\frac{X-\mu }{\frac{\sigma }{\sqrt{n}}})[/tex]
[tex]=P(\frac{40.5-40}{\frac{1}{3}}<Z)[/tex]
[tex]=P(1.5<Z)[/tex]
[tex]=1-P(Z\leq 1.5)[/tex]
[tex]=1-0.9332[/tex]
[tex]=0.0668[/tex]
The probability is 0.0668
We have given that the mean resistance =40 ohms
stranded deviation =2 ohms
n=36
what is the formula for random variable?
[tex]Z=\frac{x-\mu }{\frac{\alpha }{\sqrt{n}}}[/tex]
for the combine resistance of 1458 ohms mean resistance is
[tex]\mu }=\frac{1458}{36}=40.5[/tex]
[tex]P(40.5 < x)=P(\frac{40.5-\mu }{\frac{2}{\sqrt{36}}} < \frac{x-\mu }{\frac{\alpha }{\sqrt{n}}})[/tex]
[tex]=P(\frac{40.5}{\frac{1}{3} } < Z} )[/tex]
[tex]=P(1.5 < Z)[/tex]
=[tex]1-P(1.5\leq Z)[/tex]
=1-0.9332
=0.0668
Therefore we get the probability is 0.0668.
To learn more about the probability visit:
https://brainly.com/question/24756209