Answer:
[tex]\dfrac{T}{K}=1[/tex]
Explanation:
The translational kinetic energy of the hoop is given by :
[tex]K=\dfrac{1}{2}Mv^2[/tex]..................(1)
M is the mass of the hoop
v is the velocity of the hoop
The rotational kinetic energy of the hoop is given by :
[tex]T=\dfrac{1}{2}I\omega^2[/tex]
Since, [tex]I=MR^2[/tex]
[tex]\omega=\dfrac{v}{R}[/tex]
[tex]T=\dfrac{1}{2}\times MR^2\times (\dfrac{v}{R})^2[/tex]..............(2)
From equation (1) and (2) :
[tex]\dfrac{T}{K}=1[/tex]
Therefore, the ratio of the translational kinetic energy to the rotational kinetic energy is 1.