Answer:
See proof below
Step-by-step explanation:
If the sequence f converges to L and the sequence g converges to M, then for any [tex] \bf \epsilon >0[/tex] there exists [tex] \bf N-1[/tex] and [tex] \bf N_2[/tex] such that
[tex] \bf |f(n)-L|<\epsilon/2 \;for\;n>N_1\\|g(n)-M|<\epsilon/2 \;for\;n>N_2[/tex]
But then, by the triangle inequality
[tex] \bf |(f(n)+g(n))-(L+M)|=|(f(n)-L)+(g(n)-M)|\leq\\|f(n)-L|+|g(n)-M|<\epsilon/2+\epsilon/2=\epsilon[/tex]
for [tex] \bf N>Max\{N_1,N_2\}[/tex]
Hence
f+g converges to L+M