contestada

CX Enterprises has the following expected​ dividends: $ 1.05 in one​ year, $ 1.24 in two​ years, and $ 1.35 in three years. After​ that, its dividends are expected to grow at 4.1 % per year forever​ (so that year​ 4's dividend will be 4.1 % more than $ 1.35 and so​ on). If​ CX's equity cost of capital is 11.7 %​, what is the current price of its​ stock?

Respuesta :

Answer:

$16.16

Explanation:

Given that,

Expected​ dividends:

$1.05 in one​ year, D1

$1.24 in two​ years, D2

$1.35 in three years, D3

Growth rate of dividend, g = 4.1%

Equity cost of capital, e = 11.7 %​

[tex]P3=\frac{D3(1+g)}{(e-g)}[/tex]

[tex]P3=\frac{1.35(1+0.041)}{(0.117-0.041)}[/tex]

[tex]P3=\frac{1.40535}{0.076}[/tex]

= 18.49

[tex]current\ price=\frac{D1}{(1+e)}+\frac{D2}{(1+e)^{2} }+\frac{D3}{(1+e)^{3} }+\frac{P3}{(1+e)^{3} }[/tex]

[tex]current\ price=\frac{1.05}{(1.117)}+\frac{1.24}{(1.117)^{2} }+[\frac{1.35}{(1.117)^{3} }+\frac{18.49}{(1.117)^{3} }][/tex]

                            = 0.94 + 0.99 + 14.23

                             = $16.16