Respuesta :
Answer:
Part a)
[tex]F_1 = 22.5\hat i + 15.7 \hat j[/tex]
[tex]F_2 = -35.5 \hat i + 20.5 \hat j[/tex]
Part b)
[tex]F = -10 \hat i + 36.2 \hat j[/tex]
Part c)
[tex]a = -1.78 \hat i + 6.46 \hat j[/tex]
Part d)
[tex]v_f = -0.64 \hat i + 21.93\hat j[/tex]
Part e)
[tex]r_f = 6.09\hat i + 36.72 \hat j[/tex]
Part f)
[tex]KE = 1347.7 J[/tex]
Part g)
[tex]KE = 1348 J[/tex]
Explanation:
Part a)
first force is given as
[tex]F_1 = 27.5 N[/tex] at 35 degree
[tex]F_1 = 27.5 cos35 \hat i + 27.5 sin35 \hat j[/tex]
[tex]F_1 = 22.5\hat i + 15.7 \hat j[/tex]
Second force is given as
[tex]F_2 = 41 N[/tex] at 150 degree
[tex]F_2 = 41 cos150 \hat i + 41 sin150\hat j[/tex]
[tex]F_2 = -35.5 \hat i + 20.5 \hat j[/tex]
Part b)
Total force is given as
[tex]F = F_1 + F_2[/tex]
[tex]F = (22.5 - 35.5)\hat i + (15.7 + 20.5)\hat j[/tex]
[tex]F = -10 \hat i + 36.2 \hat j[/tex]
Part c)
as we know
F = ma so object acceleration is given as
[tex]a = \frac{F}{m}[/tex]
[tex]a = \frac{-10}{5.60} \hat i + \frac{36.2}{5.60} \hat j[/tex]
[tex]a = -1.78 \hat i + 6.46 \hat j[/tex]
Part d)
By kinematics we know that
[tex]v_f = v_i + at[/tex]
[tex]v_f = (4.70 \hat i + 2.55 \hat j) + (-1.78\hat i + 6.46\hat j)(3)[/tex]
[tex]v_f = -0.64 \hat i + 21.93\hat j[/tex]
Part e)
As we know that final position is given as
[tex]r_f = v_i t + \frac{1}{2}at^2[/tex]
[tex]r_f = (4.70 \hat i + 2.55 \hat j)(3) + \frac{1}{2}(-1.78 \hat i + 6.46 \hat j)(3^2)[/tex]
[tex]r_f = 6.09\hat i + 36.72 \hat j[/tex]
Part f)
final kinetic energy is given as
[tex]KE = \frac{1]{2}mv_f^2[/tex]
[tex]KE = \frac{1}{2}(5.60)(0.64^2 + 21.93^2)[/tex]
[tex]KE = 1347.7 J[/tex]
Part g)
final kinetic energy is given as
[tex]KE = KE_i + F.r[/tex]
[tex]KE = \frac{1}{2}(5.60)(4.70^2 + 2.55^2) + (-10 \hat i + 36.2 \hat j).(6.09\hat i + 36.72\hat j)[/tex]
[tex]KE =80 + 1268.4[/tex]
[tex]KE = 1348 J[/tex]