6. Use the diagram to answer the following.

(4x - 30)
(y)
6(z + 8)
3(x - 1)º

a. Find the values of x, y, and z that makes
p || 9 and 9 || r. Explain your reasoning.
b. Is p || r? Explain your reasoning.
90
Geometry
Resources by Chapter​

6 Use the diagram to answer the following4x 30y6z 83x 1ºa Find the values of x y and z that makesp 9 and 9 r Explain your reasoningb Is p r Explain your reasoni class=

Respuesta :

Answer:

a. [tex]x=27,y=13,z=9[/tex]

b. Yes, p || r.

Step-by-step explanation:

a.

From the figure,

Since, p || q,

[tex]3(x-1)=4x-30[/tex]  (∵ Alternate exterior angles are equal for parallel lines)

This gives,

[tex]3x-3=4x-30\\4x-3x=-3+30\\x=27[/tex]

Now, q || r

∴ [tex]6y=4x-30[/tex] (∵ Corresponding angles are equal for parallel lines)

This gives,

[tex]6y=4(27)-30\\6y=78\\y=13[/tex]

Now, since r is a straight line, [tex]6y[/tex] and [tex]6(z+8)[/tex] are supplementary angles.

[tex]6y+6(z+8)=180\\6(13)+6z+48=180\\78+48+6z=180\\6z=180-(78+48)\\6z=54\\z=\frac{54}{6}=9[/tex]

Therefore, [tex]x=27,y=13,z=9[/tex].

b.

[tex]3(x-1)=3(27-1)=3(26)=78\\6y=6\times 13=78[/tex]

Since, alternate exterior angles [tex]3(x-1)[/tex] and [tex]6y[/tex] are equal, the lines p and r are parallel because, alternate exterior angles are equal only if two lines are parallel.