Answer:
Explanation:
[tex]m_1=12.5 gm[/tex]
initial speed [tex]v_1=97.4 m/s[/tex]
Mass of block [tex]m_2=113 gm[/tex]
Initial momentum [tex]P_i=m_1\cdot v_1[/tex]
Final Momentum [tex]P_f=(m_1+m_2)\cdot v_2[/tex]
Conserving momentum
[tex]P_i=P_f[/tex]
[tex]m_1\times v_1=(m_1+m_2)v_2[/tex]
[tex]v_2=\frac{m_1}{m_1+m_2}\times v_1[/tex]
[tex]v_2=\frac{12.5}{12.5+113}\times 97.4[/tex]
[tex]v_2=9.701 m/s[/tex]
(b)Frictional Force on combined mass
[tex]F_{r}=\mu _kN[/tex]
[tex]F_{r}=0.659\times (m_1+m_2)\cdot g[/tex]
[tex]F_r=0.659\times (0.0125+0.113)\cdot 9.8[/tex]
[tex]F_r=0.81 N[/tex]
acceleration a=\frac{F_r}{m_1+m_2}[/tex]
[tex]a=\frac{0.81}{0.1255}[/tex]
[tex]a=6.45 m/s^2[/tex] (deceleration)
using [tex]v^2-u^2=2 as[/tex]
[tex]0-(9.701)^2=2\cdot (-6.45)\cdot s[/tex]
[tex]s=\frac{94.109}{12.9}[/tex]
[tex]s=7.295 m[/tex]