Answer:
12
Step-by-step explanation:
In this question, there are two variables: the number of mangoes(y) bought and the number of oranges bought(x).
Let's say the man have z money, mangoes price is [tex]\frac{1}{20}[/tex]z and the oranges price is [tex]\frac{1}{30}[/tex]z. The equation for money and number of mangoes and oranges will be:
money = mango price * mangoes bought + orange price * orange bought
z= [tex]\frac{1}{20}[/tex]z * x + [tex]\frac{1}{30}[/tex]z *y
1= [tex]\frac{1}{20}[/tex]x +[tex]\frac{1}{30}[/tex]y
-[tex]\frac{1}{30}[/tex]y= [tex]\frac{1}{20}[/tex]x -1
y= -1.5x + 30
y= 30 - 1.5x
If he want equal number of mango and orange, that mean y=x. The calculation will be:
y= 30 - 1.5x
x= 30 - 1.5x
x+ 1.5x = 30
2.5x= 30
x= [tex]\frac{30}{2.5}[/tex]= 12