Respuesta :
Answer:
Dimensions of the can should be r = 7.15 cm and height = 14.33 cm.
Step-by-step explanation:
A cylindrical can can hold the amount of water = 2.3 liters
Since 1 liter = 1000 cm³
Therefore, 2.3 liters = 2.3×1000 = 2300 cm³
Volume of a cylinder 'V' = πr²h
2300 = πr²h
[tex]h=\frac{2300}{\pi r^{2} }[/tex]---------(1)
We have to calculate the dimensions of the can that will minimize the cost.
Total surface area A = 2πrh + 2πr²
To minimize the cost of the material used we will find the derivative of the total surface area and equate the derivative to zero.
A = [tex]2\pi r(\frac{2300}{\pi r^{2}})+2\pi r^{2}[/tex]
A = [tex]\frac{4600}{r}+2\pi r^{2}[/tex]
A' = [tex]-\frac{4600}{r^{2}}\frac{dh}{dr}+4\pi r[/tex]
A' = 0
[tex]-\frac{4600}{r^{2}}\frac{dh}{dr}+4\pi r[/tex] = 0
[tex]-\frac{4600}{r^{2}}+4\pi r=0[/tex]
[tex]4\pi r=\frac{4600}{r^{2} }[/tex]
[tex]r^{3}=\frac{4600}{4\times \pi }[/tex]
[tex]r=\sqrt[3]{\frac{4600}{4\times 3.14} }[/tex]
[tex]r=\sqrt[3]{366.242}[/tex]
r = 7.15 cm
From equation (1)
[tex]h=\frac{2300}{\pi r^{2}}[/tex]
= [tex]\frac{2300}{\pi \times (7.15)^{2} }[/tex]
= 14.33 cm
Therefore, can having the radius = 7.15 cm and h = 14.33 cm will have the minimum cost.
The dimensions of the can that will minimize the cost is radius of 7.15 cm and height of 14.3 cm
How to solve an equation?
Volume = πr²h
2.3 liters = 2300 cm³, hence:
2300 cm³ = πr²h
h = (2300 / πr²)
Surface area (A) = 2πrh + 2πr²
A = 2πr(2300 / πr²) + 2πr²
A = 4600/r + 2πr²
The cost is minimum at A' = 0, hence:
A' = -4600/r² + 4πr
-4600/r² + 4πr = 0
4600/r² = 4πr
4πr³ = 4600
r = 7.15 cm
h = 2300 / (π * 7.15²) = 14.3 cm
The dimensions of the can that will minimize the cost is radius of 7.15 cm and height of 14.3 cm
Find out more on equation at: https://brainly.com/question/2972832