contestada

When a 0.235-g sample of benzoic acid is combusted in a bomb calorimeter, the temperature rises 1.643 ∘C . When a 0.275-g sample of caffeine, C8H10O2N4, is burned, the temperature rises 1.584 ∘C . Using the value 26.38 kJ/g for the heat of combustion of benzoic acid, calculate the heat of combustion per mole of caffeine at constant volume.

Respuesta :

Answer : The heat of combustion per mole of caffeine at constant volume is 76197.18 kJ/mole

Explanation :

First we have to calculate the specific heat calorimeter.

Formula used :

[tex]Q=m\times c\times \Delta T[/tex]

where,

Q = heat of combustion of benzoic acid = 26.38 kJ/g = 26380 J/g

m = mass of benzoic acid = 0.235 g

c = specific heat of calorimeter = ?

[tex]\Delta T[/tex] = change in temperature = [tex]1.643^oC[/tex]

Now put all the given value in the above formula, we get:

[tex]26380J/g=0.235g\times c\times 1.643^oC[/tex]

[tex]c=68323.38J/^oC[/tex]

Thus, the specific heat of calorimeter is [tex]68323.38J/^oC[/tex]

Now we have to calculate the heat of combustion of caffeine.

Formula used :

[tex]Q=c\times \Delta T[/tex]

where,

Q = heat of combustion of caffeine = ?

c = specific heat of calorimeter = [tex]68323.38J/^oC[/tex]

[tex]\Delta T[/tex] = change in temperature = [tex]1.584^oC[/tex]

Now put all the given value in the above formula, we get:

[tex]Q=68323.38J/^oC\times 1.584^oC[/tex]

[tex]Q=108224.23J=108.2kJ[/tex]

Now we have to calculate the moles of caffeine.

[tex]\text{Moles of caffeine}=\frac{\text{Mass of caffeine}}{\text{Molar mass of caffeine}}[/tex]

Mass of caffeine = 0.275 g

Molar mass of caffeine = 194.19 g/mole

[tex]\text{Moles of caffeine}=\frac{0.275g}{194.19g/mole}=0.00142mol[/tex]

Now we have to calculate the heat of combustion per mole of caffeine at constant volume.

[tex]\text{Heat of combustion per mole of caffeine}=\frac{108.2kJ}{0.00142mol}=76197.18kJ/mole[/tex]

Therefore, the heat of combustion per mole of caffeine at constant volume is 76197.18 kJ/mole