Cobalt−60 is a radioactive isotope used to treat cancers of the brain and other tissues. A gamma ray emitted by an atom of this isotope has an energy of 0.700 MeV (million electron volts; 1 eV = 1.602 × 10−19 J). What is the frequency (in Hz) and the wavelength (in m) of this gamma ray? Enter your answers in scientific notation.

Respuesta :

Answer:

1.69 x 10 ²⁰ Hz

1.77 x 10⁻¹² m

Explanation:

For any radiation, its energy is give by

E= hν = h c/λ  where

                                 h= Planck's constant ,  

                                 ν = Frequency,

                                 λ = wavelength,

                                 c= speed of light

We have all the information  so plug the values, being careful with the units.

E = h ν∴ ν = E/h

= (0.700 MeV x 1x10⁶ eV/MeV x 1.602 x 10⁻¹⁹ J/eV ) / 6.626 x 10⁻³⁴ J s

=  1.69 x 10 ²⁰ s⁻¹ = 1.69 x 10 ²⁰ Hz      ( 1 Hz = 1s⁻¹)

λ = c/ ν  = (3 x 10^8 m/s) /  1.69 x 10 ²⁰ s⁻¹  = 1.77 x 10⁻¹² m

The frequency of the gamma photon is 1.87 × 10^20 Hz and its wavelength is 1.6  × 10^-14 m.

Given that; 1 eV = 1.602 × 10−19 J

0.700 MeV = 0.700 × 10^6 eV

If 1 eV = 1.602 × 10−19 J

0.700 × 10^6 eV =  0.700 × 10^6 eV × 1.602 × 10−19 J/1 eV

= 1.12 × 10^-13 J

Since E = hf

Where;

E = energy of the gamma photon =  1.12 × 10^-13 J

h = Plank's constant = 6 × 10^-34 Js

f = ?

f = E/h

f =  1.12 × 10^-13 J/ 6 × 10^-34 Js

f = 1.87 × 10^20 Hz

c = λf

Where

c = speed of light = 3 × 10^8 m/s

λ = wavelength = ?

f = frequency = 1.87 × 10^20 Hz

λ = c/f

λ =  3 × 10^8 m/s/1.87 × 10^20 Hz

λ =   1.6  × 10^-12 m

Learn more: https://brainly.com/question/15178305