Answer:
[tex]K_{p} (1000K) = 0.141 [/tex]
Explanation:
From the reaction:
C₂H₆(g) ⇆ C₂H₄(g) + H₂(g)
48% 26% 26%
Knowing the composition of the mixture at equilibrium (at 1000K), we can calculate the equilibrium constant in terms of mole fraction:
[tex] K_{x} = \frac{X_{C_{2}H_{4}} \cdot X_{H_{2}}}{X_{C_{2}H_{6}}} [/tex]
where X: mole fraction of C₂H₆(g), C₂H₄(g) and H₂(g)
[tex] K_{x} = \frac{0.26 \cdot 0.26}{0.48} [/tex]
[tex] K_{x}= 0.141 [/tex]
Now, the equilibrium constant in terms of pressure can be calculated using the equilibrium constant in terms of mole fraction:
[tex] K_{p} = K_{x} \cdot (P_{T}) ^ {\Delta n} [/tex]
where [tex]P_{T} [/tex]: total pressure and Δn: number of gaseous moles of product - number of gaseous moles of reactant
[tex] K_{p} = 0.141 \cdot (1) ^ {2-1} [/tex]
[tex] K_{p} (1000K) = 0.141 [/tex]
Have a nice day!