Answer:
Part a)
[tex]v = 12.45 m/s[/tex]
Part B)
[tex]F_n = 0.05 N[/tex]
Explanation:
Part A)
As we know that the point A lies on the top of the loop
so we will have by energy conservation
[tex]mgH = \frac{1}{2}mv^2 + mg(2R)[/tex]
so the speed at point A is given as
[tex]mg(H - 2R) = \frac{1}{2}mv^2[/tex]
[tex]v = \sqrt{2g(H - 2R)}[/tex]
[tex]v = \sqrt{2(9.81)(21.9 - 2\times 7)}[/tex]
[tex]v = 12.45 m/s[/tex]
Part B)
Now the force equation at point A is given as
[tex]F_n + mg = \frac{mv^2}{R}[/tex]
[tex]F_n = \frac{mv^2}{R} - mg[/tex][/tex]
[tex]F_n = 0.004(\frac{12.45^2}{7} - 9.81)[/tex]
[tex]F_n = 0.05 N[/tex]