Answer:
p_k=\sqrt{p_x^2+p_y^2}}
Explanation:
Apply the momentum in each direction knowing that the impact is at the same time for the pieces so
[tex]p_x=m_1*v_1[/tex]
[tex]p_x=200g*2.0m/s=0.4kgm/s[/tex]
[tex]p_y=m_2*v_2[/tex]
[tex]p_y=235g*1.5m/s=0.3525kgm/s[/tex]
So the momentum in the other piece can be find knowing that
[tex]p_x^2+p_y^2=p_k^2[/tex]
So:
[tex]p_k=\sqrt{p_x^2+p_y^2}}[/tex]
[tex]p_k=\sqrt{0.4^2+0.3525^2}}=\sqrt{0.2842 kg^2*m^2/s^2}[/tex]
[tex]p_k=0.5331kg*m/s[/tex]
To find the velocity knowing the mass
[tex]p_k=m_k*v_k[/tex]
[tex]v_k=\frac{p_k}{m_k}=\frac{0.5331 kg*m/s}{0.10kg}[/tex]
[tex]v_k=5.331 m/s[/tex]