Respuesta :
Answer:
Option D
188.1 ft
Step-by-step explanation:
[tex]Tan \theta=\frac {object}{shadow}[/tex]
Therefore, [tex]object=Tan\theta \times[/tex] shadow
Substituting [tex]\theta[/tex] for [tex]62^{\circ}[/tex] and shadow for 100 ft
[tex]Object=Tan 62^{\circ} \times 100=188.0726465 [/tex]
[tex]Object \approx 188.1[/tex]
Answer: D) 188.1 feet
Step-by-step explanation:
Opposite side = X
adjacent side = 100feet
θ = 62°
Using the tangent formular
tanθ =opposite/adjacent
tan62° = x/100
Cross multiply
x= 100tan62°
x = 100 × 1.880726
x= 188.0726
x= 188.1 feet to the nearest tenth