Respuesta :

Answer:

3) [tex]y=(x+3)^2+2[/tex]

Step-by-step explanation:

The vertex for a quadratic equation is given by:

[tex]y=a(x-h)^2+k[/tex]

Where [tex]a[/tex] ≠0 and [tex](h,k)[/tex] is the vertex of the the curve.

From the graph we see that the vertex is [tex](-3,2)[/tex]

Thus the equation of the graph can be written as:

[tex]y=a(x-(-3))^2+2[/tex]

[tex]y=a(x+3)^2+2[/tex]

Given y-intercept on the graph [tex](0,11)[/tex]

Plugging in point of y-intercept in the equation we got in order to find [tex]a[/tex]

[tex]11=a(0+3)^2+2[/tex]

[tex]11=a(3)^2+2[/tex]

[tex]11=9a+2[/tex]

Subtracting both sides by 2.

[tex]11-2=9a+2-2[/tex]

[tex]9=9a[/tex]

Dividing both sides by 9.

[tex]\frac{9}{9}=\frac{9a}{9}[/tex]

∴ [tex]a=1[/tex]

So the equation of graph is

[tex]y=(1)(x+3)^2+2[/tex]

[tex]y=(x+3)^2+2[/tex]