Given right triangle ABC, what is the value of tan(A)? Five-thirteenths Twelve-thirteenths Twelve-fifths Thirteen-twelfths

Respuesta :

Answer:

Twelve-fifths.

Step-by-step explanation:

The diagram is shown below

Given triangle be right angled at [tex]B[/tex],

Withe reference to [tex]\angle A[/tex],

Its opposite side is [tex]BC=12[/tex] , adjacent side is [tex]AB=5[/tex] and hypotenuse is [tex]AC=13[/tex]

We are to find the value of [tex]tan(A)[/tex]

We know [tex]tan=\frac{opposite}{adjacent}[/tex]

Substituting the above values we get,

[tex]tan(A)= \frac{BC}{AB}=\frac{12}{5}[/tex]

So the answer is Twelve-fifths.

Ver imagen jitushashi123

Answer:

C. [tex]\frac{12}{13}[/tex]

Step-by-step explanation:

cos(Z) = cos(C)

cos(C) = 12/13

Because adjacent side over hypotenuse side length.

Therefore, cos(Z) = 12/13.

Ver imagen fanare2513