Answer:
[tex]\frac{1}{3} ,\frac{1}{y} , \frac{1}{y^{2} } \textrm { and } (3x^{2} + 1)[/tex]
[tex]\frac{1}{3} ,\frac{1}{y} , \frac{1}{y^{2} }, (\sqrt{3} x + 1) \textrm { and } (\sqrt{3} x - 1)[/tex]
Step-by-step explanation:
We have to find the factors of the expression (3x² ± 1) ÷ 3y²
Now, (3x² ± 1) ÷ 3y² = (3x² + 1) ÷ 3y² and (3x² - 1) ÷ 3y²
Now, factors of (3x² + 1) ÷ 3y² are [tex]\frac{1}{3} ,\frac{1}{y} , \frac{1}{y^{2} } \textrm { and } (3x^{2} + 1)[/tex]
Again the factors of (3x² - 1) ÷ 3y² are [tex]\frac{1}{3} ,\frac{1}{y} , \frac{1}{y^{2} }, (\sqrt{3} x + 1) \textrm { and } (\sqrt{3} x - 1)[/tex] (Answer)