Answer:
128.98 feet
Step-by-step explanation:
By the given information,
Suppose ABC is a triangle,
According to the question,
BC = 240 feet,
m∠ABC = 100°,
m∠ACB = 25°,
∵ m∠ACB + m∠ABC + m∠BAC = 180°,
25° + 100° + m∠BAC = 180°,
125° + m∠BAC = 180°,
⇒ m∠BAC = 55°,
Now the law of sine,
[tex]\frac{\sin C}{AB}=\frac{\sin A}{BC}[/tex]
[tex]\frac{\sin 25^{\circ}}{AB}=\frac{\sin 55^{\circ}}{240}[/tex]
[tex]\implies AB = \frac{250 \sin 25^{\circ}}{\sin 55^{\circ}}\approx 128.98[/tex]
Hence, the distance between A and B would be 128.98 ft ( approx )