Respuesta :
Answer:
the deviation for ethanol relative to the pure components is -0.09 L (contracts) and for water is 0.01 L (expands)
Explanation:
Assuming we are preparing 2.50 L solution of ethanol-water without considering the change in volume
x et / 1- x et = n et / n w =(M w/M et) * m et / m w → m et = (x et / 1- x et )*k* n w
V final = m w / D w + m et / D et = m w / D w + (x et / 1- x et )*k/ D et * m w
therefore
m w = V final /( 1/D w + [(x et / 1- x et )* k/ D et )
replacing values
m w = 2.50 L / (1/ 997 kg/m³ + (0.35/0.65)*(46/18)/ 789 kg/m³ ) * m³ / 1000 L = 0.91 Kg
m et = (0.35/0.65)*(46/18) 0.91 Kg = 0.49 Kg
therefore
V w = m w/ D w = 0.91 Kg / 997 Kg/m³ *1000 L/m³ = 0.91 L
V et = m w/ D w = 0.49 Kg / 789 Kg/m³ *1000 L/m³ = 1.59 L
n w = 0.91 Kg / 18 g/mol *1000 g/Kg = 50.55 moles of water
n et = (0.35 /0.65) * 50.55 = 27.22 moles of ethanol
the real volumes in solution are
Vr et = n et * v et = 27.22 mol * 55.2*10^-3 L/mol = 1.50 L
Vr w = n et * v et = 50.55 mol * 17.8*10^-3 L/mol = 0.90 L
the deviation relative to pure components are
d et = Vr et - V et = 1.50 L - 1.59 L = (-0.09 L)
d w = Vr w - V w = 0.91 L - 0.90 L = 0.01 L