Answer:
Part a)
[tex]F = 4.32 N[/tex]
Part b)
[tex]\theta = 34.2 degree[/tex]
Explanation:
Part a)
let force is applied at constant value F
Now by vertical direction force balance we know that
[tex]Fcos44 + mg = F_n[/tex]
now the friction force on the mop while it moves with uniform speed is given as
[tex]F_k = \mu_k F_n[/tex]
[tex]F_k = 0.32(Fcos44 + mg)[/tex]
Now for uniform speed of mop the horizontal force must be balanced on it
so we have
[tex]Fsin44 = 0.32(Fcos44 + mg)[/tex]
[tex]Fsin44 - 0.32 Fcos44 = 0.32 mg[/tex]
[tex]F = \frac{0.32mg}{sin44 - 0.32cos44}[/tex]
[tex]F = \frac{0.32(0.64)(9.81)}{sin44 - 0.32cos44}[/tex]
[tex]F = 4.32 N[/tex]
Part b)
for a certain value of angle if Mop is not moved then we will have
[tex]F_x = F_f[/tex]
so we can say that in that case the friction must be static friction
so we will have
[tex]Fsin\theta = \mu_s(mg + F cos\theta)[/tex]
[tex]F sin\theta = 0.68(0.64\times 9.81 + F cos\theta)[/tex]
[tex]F(sin\theta - 0.68cos\theta) = 4.27[/tex]
[tex]F = \frac{4.27}{sin\theta - 0.68 cos\theta}[/tex]
If it will not move than
[tex]sin\theta < 0.68 cos\theta[/tex]
[tex]\theta = 34.2 degree[/tex]