Answer:
Option B
[tex]116 ft/s^{2}[/tex]
Explanation:
[tex]\theta=2 rev=2(2\pi)=4\pi[/tex]
[tex]\alpha \theta=0.5(\omega_f^{2}-\omega_i^{2})[/tex]
[tex]\alpha (4\pi)= 0.5(\omega_f^{2}-\omega_i^{2})[/tex]
[tex]\alpha (8\pi)= (\omega_f^{2}-\omega_i^{2})[/tex]
[tex] (2) (8\pi)= (\omega_f^{2}-\omega_i^{2})[/tex]
[tex] (2) (8\pi)= (\omega_f^{2}-4^{2})[/tex]
[tex]\omega_f=8.14 rads/s[/tex]
[tex]v=r\omega=1.75*8.14=14.245 ft/s[/tex]
Centripetal acceleration [tex]=\omega_f^{2} r=8.14^{2}*1.75=115.95 ft/s^{2}[/tex]
Tangential component=dr=2*1.75=3.5
[tex]Resultant=\sqrt{3.5^{2}+115.95^{2}}\approx 116 ft/s^{2}[/tex]