The fan blades suddenly experience an angular acceleration of 2 rad/s2. If the blades are rotating with an initial angular velocity of 4 rad/s, determine the magnitude of the acceleration of point P when the blades have turned 2 revolutions. Ch16Prob4
a.115.95 ft/s^2
b.116 ft/s^2
c.0ft/s^2
d.3.5 ft/s^2

Respuesta :

Answer:

Option B

[tex]116 ft/s^{2}[/tex]

Explanation:

[tex]\theta=2 rev=2(2\pi)=4\pi[/tex]

[tex]\alpha \theta=0.5(\omega_f^{2}-\omega_i^{2})[/tex]

[tex]\alpha (4\pi)= 0.5(\omega_f^{2}-\omega_i^{2})[/tex]

[tex]\alpha (8\pi)= (\omega_f^{2}-\omega_i^{2})[/tex]

[tex] (2) (8\pi)= (\omega_f^{2}-\omega_i^{2})[/tex]

[tex] (2) (8\pi)= (\omega_f^{2}-4^{2})[/tex]

[tex]\omega_f=8.14 rads/s[/tex]

[tex]v=r\omega=1.75*8.14=14.245 ft/s[/tex]

Centripetal acceleration [tex]=\omega_f^{2} r=8.14^{2}*1.75=115.95 ft/s^{2}[/tex]

Tangential component=dr=2*1.75=3.5

[tex]Resultant=\sqrt{3.5^{2}+115.95^{2}}\approx 116 ft/s^{2}[/tex]