Respuesta :

y=(((x^2)-(6*x)+45)/12)

Answer:

Vertex is (3,3)

Focus (3,6)

Directrix y=0

Step-by-step explanation:

We are given that an equation of parabola

[tex]12y=x^2-6x+45[/tex]

Subtract 45 on bot sides then we get

[tex]12y-45=x^2-6x[/tex]

To make complete square on right side

We add 9 on both sides

[tex]12y-45+9=x^2-6y+9[/tex]

[tex]12y-36=(x-3)^2[/tex]    ([tex](a-b)^2=a^2+b^2-2ab,(x-3)^2=x^2-6x+9)[/tex]

[tex]12(y-3)=(x-3)^2[/tex]

Compare it with the equation of parabola along y- axis

[tex](x-h)^2=4p(y-k)[/tex]

Then, we get h=3,k=[tex]3[/tex]

[tex]4p=12[/tex]

[tex]p=\frac{12}{4}=3[/tex]

Vertex of parabola =(h,k)=(3,3)

Focus of parabola=(x,p+k)=(3,3+3)=(3,6)

Equation of directrix of parabola ,y=k-p=3-3=0