Leutium-176 has a half-life of 3.85 mc012-1.jpg 1010 years. After 1.155 mc012-2.jpg 1011 years, how much leutium-176 will remain from an original 16.8-g sample?
2.10 g
3.00 g
5.56 g
8.40 g

Respuesta :

Answer : The amount left of leutium-176 will be, 2.10 g

Solution :

First we have to calculate the rate constant, we use the formula :

[tex]k=\frac{0.693}{t_{1/2}}[/tex]

[tex]k=\frac{0.693}{3.85\times 10^{10}\text{years}}[/tex]

[tex]k=0.18\times 10^{-10}\text{years}^{-1}[/tex]

Now we have to calculate the amount left of the sample.

Expression for rate law for first order kinetics is given by :

[tex]t=\frac{2.303}{k}\log\frac{a}{a-x}[/tex]

where,

k = rate constant  = [tex]0.18\times 10^{-10}\text{years}^{-1}[/tex]

t = decay time  = [tex]1.155\times 10^{11}\text{ years}[/tex]

a = initial amount of the sample = 16.8 g

a - x = amount left after decay process  = ?

Now put all the given values in above equation, we get

[tex]1.155\times 10^{11}\text{years}=\frac{2.303}{0.18\times 10^{-10}\text{years}^{-1}}\log\frac{16.8}{a-x}[/tex]

[tex]a-x=2.10g[/tex]

Therefore, the amount left of leutium-176 will be, 2.10 g

Answer:

2.1 or A

Explanation:

edg