Respuesta :
Answer:
Part 1) No solutions
Part 2) [tex]y=9[/tex]
part 3) [tex](0,-3)[/tex]
Step-by-step explanation:
Part 1) we have
[tex]3x-2y=6[/tex] -------> equation A
[tex]6x-4y=14[/tex] -------> equation B
Multiply the equation A by [tex]2[/tex]
[tex]2(3x-2y)=2*6[/tex] --------> [tex]6x-4y=12[/tex]
Equation A and equation B represent parallel lines
therefore
Is a inconsistent system of equations
The system has no solution
Part 2) we have
[tex]5x+4y=1[/tex] -------> equation A
[tex]4x+3y=-1[/tex] -------> equation B
Multiply equation A by [tex]4[/tex]
[tex]4*(5x+4y)=4*1[/tex] ------> [tex]20x+16y=4[/tex] ------> equation C
Multiply equation B by [tex]-5[/tex]
[tex]-5*(4x+3y)=-5*-1[/tex] ------> [tex]-20x-15y=5[/tex] ------> equation D
Adds equation C and equation D
[tex]20x+16y=4\\-20x-15y=5\\---------\\16y-15y=4+5\\y=9[/tex]
Part 3) we have
[tex]y< 2x+4[/tex] -------> inequality A
[tex]y< -2x+2[/tex] -------> inequality B
we know that
If a ordered pair lie in the solution set of the system of inequalities
then
the ordered pair must be satisfy the system of inequalities
case A) [tex](1,0)[/tex]
substitute the value of x and the value of y in both inequalities
Verify inequality A
[tex]0< 2(1)+4[/tex]
[tex]0< 6[/tex] -------> is true
Verify inequality B
[tex]0< -2(1)+2[/tex]
[tex]0< 0[/tex] ------> is not true
the point [tex](1,0)[/tex] is not a solution
case B) [tex](-5,-2)[/tex]
substitute the value of x and the value of y in both inequalities
Verify inequality A
[tex]-2< 2(-5)+4[/tex]
[tex]-2< -6[/tex] -------> is not true
the point [tex](-5,-2)[/tex] is not a solution
case C) [tex](0,-3)[/tex]
substitute the value of x and the value of y in both inequalities
Verify inequality A
[tex]-3< 2(0)+4[/tex]
[tex]-3< 4[/tex] -------> is true
Verify inequality B
[tex]-3< -2(0)+2[/tex]
[tex]-3< 2[/tex] ------> is true
the point [tex](0,-3)[/tex] is a solution
case D) [tex](-1,5)[/tex]
substitute the value of x and the value of y in both inequalities
Verify inequality A
[tex]5< 2(-1)+4[/tex]
[tex]5< 2[/tex] -------> is not true
the point [tex](-1,5)[/tex] is not a solution