Respuesta :
x2 + y2 -x -2y -11/4 = 0
x2 -x +y2-2y-11/4 =0
we need to elliminate x , y from the equation and get the general form of the circle (x-k)^2 + (y-h)^2 = r^2 so,
[(x-1/2)^2 -1/4] + [(y-1)^2 -1] -11/4 = 0
(x-1/2)^2 + (y-1)^2 [ -1/4 -1-11/4] =0
(x-1/2)^2 + (y-1)^2 = 4
so the center of the circle is (1/2 , 1 )
and the rdius is √4 = 2
x2 -x +y2-2y-11/4 =0
we need to elliminate x , y from the equation and get the general form of the circle (x-k)^2 + (y-h)^2 = r^2 so,
[(x-1/2)^2 -1/4] + [(y-1)^2 -1] -11/4 = 0
(x-1/2)^2 + (y-1)^2 [ -1/4 -1-11/4] =0
(x-1/2)^2 + (y-1)^2 = 4
so the center of the circle is (1/2 , 1 )
and the rdius is √4 = 2
Answer:
Coordinates of center is [tex](\frac{1}{2},1)[/tex] and length of the radius is 2 units
Step-by-step explanation:
Given Equation of circle : [tex]x^2+y^2-x-2y-\frac{11}{4}=0[/tex]
We have to find coordinates of center and length of the radius.
consider,
[tex]x^2+y^2-x-2y-\frac{11}{4}=0[/tex]
[tex]x^2-x+y^2-2y-\frac{11}{4}=0[/tex]
using completing the square method, we get
[tex]x^2-x+\frac{1}{4}-\frac{1}{4}+y^2-2y+1-1-\frac{11}{4}=0[/tex]
[tex](x-\frac{1}{2})^2-\frac{1}{4}+(y-1)^2-1-\frac{11}{4}=0[/tex]
[tex](x-\frac{1}{2})^2+(y-1)^2-\frac{1}{4}-1-\frac{11}{4}=0[/tex]
[tex](x-\frac{1}{2})^2+(y-1)^2+\frac{-1-4-11}{4}=0[/tex]
[tex](x-\frac{1}{2})^2+(y-1)^2-\frac{16}{4}=0[/tex]
[tex](x-\frac{1}{2})^2+(y-1)^2=\frac{16}{4}[/tex]
[tex](x-\frac{1}{2})^2+(y-1)^2=2^2[/tex]
Now comparing with the standard form of the circle, (x-h)² + (y-k)² = r²
we get [tex](h,k)=(\frac{1}{2},1)[/tex] and r = 2
Therefore, Coordinates of center is [tex](\frac{1}{2},1)[/tex] and length of the radius is 2 units