Respuesta :

Tareki
x2 + y2 -x -2y -11/4 = 0 
x2 -x +y2-2y-11/4 =0 
we need to elliminate x , y from the equation and get the general form of the circle (x-k)^2 + (y-h)^2 = r^2   so, 
[(x-1/2)^2 -1/4] + [(y-1)^2 -1] -11/4 = 0 
(x-1/2)^2 + (y-1)^2 [ -1/4 -1-11/4] =0 
(x-1/2)^2 + (y-1)^2 = 4 
so the center of the circle is (1/2 , 1 ) 
and the rdius is √4 = 2 

Answer:

Coordinates of center is [tex](\frac{1}{2},1)[/tex]  and length of the radius is 2 units

Step-by-step explanation:

Given Equation of circle : [tex]x^2+y^2-x-2y-\frac{11}{4}=0[/tex]

We have to find coordinates of center and length of the radius.

consider, 

[tex]x^2+y^2-x-2y-\frac{11}{4}=0[/tex]

[tex]x^2-x+y^2-2y-\frac{11}{4}=0[/tex]

using completing the square method, we get

[tex]x^2-x+\frac{1}{4}-\frac{1}{4}+y^2-2y+1-1-\frac{11}{4}=0[/tex]

[tex](x-\frac{1}{2})^2-\frac{1}{4}+(y-1)^2-1-\frac{11}{4}=0[/tex]

[tex](x-\frac{1}{2})^2+(y-1)^2-\frac{1}{4}-1-\frac{11}{4}=0[/tex]

[tex](x-\frac{1}{2})^2+(y-1)^2+\frac{-1-4-11}{4}=0[/tex]

[tex](x-\frac{1}{2})^2+(y-1)^2-\frac{16}{4}=0[/tex]

[tex](x-\frac{1}{2})^2+(y-1)^2=\frac{16}{4}[/tex]

[tex](x-\frac{1}{2})^2+(y-1)^2=2^2[/tex]

Now comparing with the standard form of the circle, (x-h)² + (y-k)² = r²

we get [tex](h,k)=(\frac{1}{2},1)[/tex] and r = 2

Therefore, Coordinates of center is [tex](\frac{1}{2},1)[/tex]  and length of the radius is 2 units