Respuesta :
The system of linear equations that relates x and y:
x= 15 + y
5 x = 2 y+ 525
We will solve this system using substitution method:
5(15 + y)=2 y + 525
75 + 5 y = 2 y + 525
5 y - 2 y = 525 - 75
3 y = 450, y = 450 : 3 y = 150
x = 15 + y x = 15 + 150 x = 165
Answer: Aaron´s height is 165 cm and Peter´s height is 150 cm.
x= 15 + y
5 x = 2 y+ 525
We will solve this system using substitution method:
5(15 + y)=2 y + 525
75 + 5 y = 2 y + 525
5 y - 2 y = 525 - 75
3 y = 450, y = 450 : 3 y = 150
x = 15 + y x = 15 + 150 x = 165
Answer: Aaron´s height is 165 cm and Peter´s height is 150 cm.
Answer:
The system of linear equations that relates Aaron's height (x) and Peter's height (y) is given by x - y = 15 and 5x - 2y = 525. Aaron's height is 165 centimeters, and Peter's height is 150 centimeters.
Step-by-step explanation:
x-y=15
x=15+y find x
5(15+y)-2y=525 place x value in x placeholder
75+5y-2y=525 simplify
5y-2y=450 subtract 75 from both sides
3y=450 simplify
y=150
5x-2(150)=525 rewrite equation
5x-300=525 simplify
5x=825 add 300 to both sides
x=165