Respuesta :
The period of this function ( cos (bx) ):
T =[tex] \frac{2 \pi }{b}=12 [/tex]
b= [tex] \frac{2 \pi }{12} = \frac{ \pi }{6} [/tex]
Maximum tide : 9 feet (for cos value 1) f(t)=4*1 + 5 = 9
Minimum tide: 1 feet ( for cos value -1) f(t) = 4*(-1) + 5 =1
Answer: D) f(t)= 4 cos (π/6 t) +5
T =[tex] \frac{2 \pi }{b}=12 [/tex]
b= [tex] \frac{2 \pi }{12} = \frac{ \pi }{6} [/tex]
Maximum tide : 9 feet (for cos value 1) f(t)=4*1 + 5 = 9
Minimum tide: 1 feet ( for cos value -1) f(t) = 4*(-1) + 5 =1
Answer: D) f(t)= 4 cos (π/6 t) +5
Answer:
f(t) = 4 cos pi over 6t + 5
Step-by-step explanation:
First find the amplitude \
9-1=8/2=4
Then the midline
9+1=10/2=5
Then we solve fore b
2pi/b=12/1➡2pi=12b➡b=2pi/12=pi/6
Then we put it together the amplitude being a the midline is d and we just did b so the correct option would be
f(t) = 4 cos pi over 6t + 5