Respuesta :

caylus
Hello,

y=7x²+42x
==>y=7(x²+2*3*x+9)-63
==>y=7(x+3)²-63


Answer:

[tex]\boxed{\boxed{y = 7(x+3)^2-63}}[/tex]

Step-by-step explanation:

The general vertex form of parabola is,

[tex]y=a(x-h)+k[/tex]

where,

(h, k) is the vertex of the parabola.

The given function is,

[tex]\Rightarrow f(x) = 7x^2 + 42x[/tex]

[tex]\Rightarrow y = 7x^2 + 42x[/tex]

[tex]\Rightarrow y = 7(x^2 + 6x)[/tex]

[tex]\Rightarrow y = 7(x^2 + 2\cdot x\cdot 3)[/tex]

[tex]\Rightarrow y = 7(x^2 + 2\cdot x\cdot 3+3^3-3^2)[/tex]

[tex]\Rightarrow y = 7(x^2 + 2\cdot x\cdot 3+3^3)-7\cdot 3^2[/tex]

[tex]\Rightarrow y = 7(x+3)^2-7\cdot 9[/tex]

[tex]\Rightarrow y = 7(x+3)^2-63[/tex]

This is vertex form the given function.