Respuesta :
x3 - 2x2 - x[tex]\frac{x^{3} - 3x^{2} + 3x - 2}{x^{2} - x + 1} = \frac{x^{3} - 2x^{2} - x^{2} + 2x + x - 2}{x^{2} - x + 1} = \frac{x^{2}(x) - x^{2}(2) - x(x) + x(2) + 1(x) - 1(2)}{x^{2} - x + 1} = \frac{x^{2}(x - 2) - x(x - 2) - 1(x - 2)}{x^{2} - x + 1} = \frac{(x^{2} - x + 1)(x - 2)}{x^{2} - x + 1} = x - 2[/tex]
The answer is A.
The answer is A.
Answer:
A x-2
Step-by-step explanation:
Equation: (x3 – 3x2 + 3x – 2) ÷ (x2 – x + 1)
Work:
(x3 – 3x2 + 3x – 2) ÷ (x2 – x + 1)
(x^2 - x + 1)(x - 2) over x^2 - x + 1
x - 2
Final Answer:
x - 2