[tex]y=- x^{2} +8x-15[/tex]
written in vertex form, we have,
[tex]y=-(x-4)^{2} +1[/tex],
i.e. vertex = (4, 1) and maximum value at y = 1.
[tex]y=- x^{2} +2x-3[/tex]
written in vertex form, we have,
[tex]y=-(x-1)^{2} -2[/tex],
i.e. vertex = (1, -2) and maximum value at y = -2.
Therefore, [tex]y=- x^{2} +8x-15[/tex] has the larger maximum.